The Journal of Neuroscience, October 15, 1999, 79(20):9016-9028

Parametric Population Representation of Retinal Location:
Neuronal Interaction Dynamics in Cat Primary Visual Cortex

Dirk Jancke,” Wolfram Erlhagen,’ Hubert R. Dinse,” Amir C. Akhavan,’2 Martin Giese,’ Axel Steinhage,’ and

Gregor Schéner?

1institut fir Neuroinformatik, Theoretische Biologie, Ruhr-Universitét, D-44780 Bochum, Germany, 2Keck Center for
Integrative Neuroscience, University of California, San Francisco, California 94143, and 3Centre de Recherche en
Neurosciences Cognitives, Centre National de la Recherche Scientifique, F-13402 Marseille, France

Neuronal interactions are an intricate part of cortical information
processing generating internal representations of the environ-
ment beyond simple one-to-one mappings of the input param-
eter space. Here we examined functional ranges of interaction
processes within ensembles of neurons in cat primary visual
cortex. Seven “elementary” stimuli consisting of small squares
of light were presented at contiguous horizontal positions. The
population representation of these stimuli was compared to the
representation of “composite” stimuli, consisting of two
squares of light at varied separations. Based on receptive field
measurements and by application of an Optimal Linear Estima-
tor, the representation of retinal location was constructed as a
distribution of population activation (DPA) in visual space. The
spatiotemporal pattern of the DPA was investigated by obtain-
ing the activity of each neuron for a sequence of time intervals.
We found that the DPA of composite stimuli deviates from the

superposition of its components because of distance-
dependent (1) early excitation and (2) late inhibition. (3) The
shape of the DPA of composite stimuli revealed a distance-
dependent repulsion effect. We simulated these findings within
the framework of dynamic neural fields. In the model, the
feedforward response of neurons is modulated by spatial
ranges of excitatory and inhibitory interactions within the pop-
ulation. A single set of model parameters was sufficient to
describe the main experimental effects. Combined, our results
indicate that the spatiotemporal processing of visual stimuli is
characterized by a delicate, mutual interplay between stimulus-
dependent and interaction-based strategies contributing to the
formation of widespread cortical activation patterns.
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During the recent years neurons of the visual cortex have been
extensively investigated according to a diversity of feature at-
tributes. In search of optimal stimulus conditions, they were
classified with respect to differing receptive field (RF) properties.
However, RFs can exhibit complex, nonpredictive behavior de-
pendent on further variations of the stimulus parameters. In
addition, these complex spatiotemporal response properties can
be modified by stimulation displaced from the RF center or from
outside the classical RF (Allman et al., 1985; Dinse, 1986; Gilbert
and Wiesel, 1990; Sillito et al., 1995). These observations were
explained with results from anatomical and physiological studies
revealing extensive long-range horizontal intracortical connec-
tions (Fisken et al., 1975; Creutzfeldt et al., 1977; Gilbert and
Wiesel, 1979, 1990; Kisvarday and Eysel, 1993; Bringuier et al.,
1999). Accordingly, optical imaging techniques demonstrated that
the cortical processing of even very small objects is associated
with a widespread pattern of cortical population activation (Grin-
vald et al., 1994; Godde et al., 1995).

Neural population analysis refers to the notion that large en-
sembles of neurons contribute to the cortical representation of
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sensory or motor parameters. Early formulations of this idea
(Erickson, 1974) conceived of the representation of complex
stimuli in terms of elementary feature detectors simply as a
combination of the simultaneous levels of their activation. In
primary motor cortex, ensembles of neurons broadly tuned to the
direction of movement have been shown to accurately represent
the current value of that parameter (Georgopoulos et al., 1986,
1993). These observations inspired renewed attempts to investi-
gate sensory representations in terms of population codes (Stein-
metz et al., 1987; Lee et al., 1988; Vogels, 1990; Young and
Yamane, 1992; Wilson and McNaughton, 1993; Nicolelis and
Chapin, 1994; Ruiz et al., 1995; Jancke et al., 1996; Kalt et al.,
1996; Zhang, 1996; Groh et al., 1997; Sugihara et al., 1998; Zhang
et al., 1998) and triggered theoretical work examining the formal
basis of coding by populations of neurons (Gielen et al., 1988;
Vogels, 1990; Zohary, 1992; Gaal, 1993a,b; Seung and Sompolin-
sky, 1993; Anderson, 1994a,b; Salinas and Abbott, 1994; Giese et
al., 1997; Pouget et al., 1998; Zemel et al., 1998; Zhang et al., 1998).

In this paper we studied how small visual stimuli can be
represented by the joint activation of a population of neurons in
cat primary visual cortex and how neurons within such a popu-
lation interact in terms of a common metric dimension, in our
case, in visual space.

In a first step, we attempted to extract the contribution of
neurons to the representation of the location of small squares of
light, which we called “elementary” stimuli (Fig. 14). We there-
fore constructed distributions of population activation (DPAs)
defined in the visual field that can be regarded as a subspace of
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 X 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4-2.4°. The left stimulus component was kept at a fixed nasal position. C, Illustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 X 2.0). D-F, Illustration of the Gaussian
interpolation method to construct the DPA. DI, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. £, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup

Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N,O and 25% O, and by application of sodium
pentobarbital (Nembutal, 3 mg - kg ~' - hr !, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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bolus; 2 mg-kg ~'-hr ! iv., Sigma, St. Louis, MO). In addition, 5%
glucose in physiological Ringer’s solution was continuously infused (3
ml/hr; Braun). Heart rate, intratracheal pressure, expired CO,, body
temperature, and EEG were monitored during the entire experiment.
Respiration was adjusted for an end-tidal CO, between 3.5 and 4.0%.
The body temperature was kept at 37.5°C by means of a feedback-
controlled heating pad. Contact lenses with artificial pupils (3 mm diam-
eter) were used to cover the eyes, which were frequently rinsed with
artificial eye liquid (Liquifilm; Pharm-Allergan). Pupils were dilated by
atropine (5 mg/ml), and nictitating membranes were retracted by nor-
epinephrine (Neosynephrin-POS, 50 mg/ml; Ursapharm). The bone and
dura mater were removed over the central representation of area 17 in
the left hemisphere. The exposed cortex was covered with heavy silicone
oil. At the end of the experiments, animals were killed with an overdose
of sodium pentobarbital.

Data acquisition. We recorded responses of single units in the foveal
representation in area 17 of the left hemisphere. Stimuli were always
presented to the contralateral eye. Recordings were performed simulta-
neously with two or three glass-coated platinum electrodes (resistance
between 3.5 and 4.5 MQ; Thomas Recording), which were advanced with
a microstepper. The bandpass-filtered (500-3000 Hz) electrode signals
were fed into spike sorters based on an on-line principle component
analysis (Gawne and Richmond, National Institutes of Health, Bethesda,
MD). Their output TTL-pulses were stored on a personal computer
(PC) with a time resolution of 1 msec. Raw analog recordings were
displayed on oscilloscopes and on audio monitors. Digitized neural
responses were displayed as poststimulus time histograms (PSTHs) on-
line during the recording sessions.

Data were analyzed off-line in the Interactive Data Language graph-
ical environment (Research Systems, Inc.).

Visual stimulation. Stimuli were displayed on a PC-controlled 21 inch
monitor (120 Hz, noninterlaced) positioned at a distance of 114 cm from
the animal.

An identical set of common stimuli was presented to all neurons: (1)
elementary stimuli (Fig. 14), small squares of light (size, 0.4 X 0.4°),
were flashed at one of seven different horizontally contiguous locations
within a fixed foveal reference frame; and (2) composite stimuli (Fig.
1B), two simultaneously flashed squares of light, were separated by
distances that varied between 0.4 and 2.4°. Each stimulus was flashed for
25 msec. The interstimulus interval (ISI) was 1500 msec. There were a
total of 32 repetitions of each stimulus, arranged in pseudorandom order
across the different conditions. Stimuli had a luminance of 0.9 cd/m?
against a background luminance of 0.002 cd/m?2. The retinal position of
these common stimuli was constant, irrespective of the RF location of
individual neurons (non-RF-centered approach illustrated in Fig.
1C,D4).

The profile of each individual RF was assessed quantitatively with a
separate set of stimuli, consisting of small dots of light (diameter, 0.64°)
that were flashed in pseudorandom order (20 times) for 25 msec (ISI,
1000 msec) on the 36 locations of an imaginary 6 X 6 grid, centered over
the hand-plotted RF (response plane technique, Fig. 1DI). To control for
eye drift, RF profiles were repeatedly measured during each recording
session.

Construction of the DPA

The general idea behind constructing a population distribution is to
extract the contributions of neurons to the representation of a particular
stimulus parameter. To obtain entire distributions that are defined for
visual field location, two types of analysis were applied: (1) based on the
measured RF profiles (Fig. 1D1,D2), the calculated RF centers (Fig.
1D3) served to construct two-dimensional DPAs by interpolating the
normalized firing rates of each contributing neuron with a Gaussian
profile (cf. Anderson, 1994a,b, for a related attempt) (Fig. 1E,F); and (2)
to minimize the reconstruction error for the elementary stimulus condi-
tions, we extended the Optimal Linear Estimator (OLE) (Salinas and
Abbott, 1994), resulting in one-dimensional DPAs (Fig. 2C).

Constructing two-dimensional DPAs by Gaussian interpolation. For each
location on the 6 X 6 grid, an average response strength was determined
for each cell by averaging the firing rate in the time interval between 40
and 65 msec after stimulus onset corresponding to the peak responses in
the PSTHs. RF profiles were obtained (Fig. 1D2) and smoothed by
convolution with a Gaussian profile in two dimensions (half width, 0.64°%
Fig. 1D3). The center of the RF of each cell was then computed as the
center of mass of that part of the RF profile that exceeded half of the
maximal firing rate.
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The firing rate, f,(s,) of neuron number # to stimulus number s was
defined as the firing rate in a 10 msec time interval beginning at time ¢
after stimulus onset, averaged over 32 stimulus repetitions. Spontaneous
activity, b,, was estimated as the mean firing rate accumulated over
nonstimulus trials. For the purpose of constructing the population rep-
resentation, the firing rate of each cell was normalized to its maximum
firing rate, m,,, over all stimuli used to measure the response planes and
during any single 10 msec bin in the time interval from stimulus onset to
100 msec after stimulus onset. This normalized firing rate:

fn(s, t) - bn
F,,(S, t) - m, — bn (1)
was always well defined and positive (Fig. 1D4).
The normalized firing rates, F,(s,¢), were depicted at the position of the
calculated RF center of each neuron. For interpolation of the data points,
the width of the Gaussian profile was chosen equal to 0.6° in visual space
(approximately corresponding to the average RF width of all neurons
recorded) (Fig. 24). To correct for uneven sampling of visual space by
the limited number of RF centers, the distribution was normalized by
dividing by a density function, which was simply the sum of unweighted
Gaussian profiles (width, 0.64°) centered on all RF centers. This proce-
dure is illustrated in Figure 1, £ and F.
Deriving the optimal linear estimator for the DPA. An optimal estimation
of the DPA is based on the responses to elementary stimuli. For each
stimulus position s;, the DPA, U,(s,), is constructed as a linear combina-

tion of contributions from each neuron (n = 1, ..., N):
N
Uis) = 2} enls) fils)- @
n=1

The number M of sample points s, determines the degree of resolution
with which the DPAs are sampled. The contribution of each neuron is a
basis function, c¢,(sy), to be determined by optimization, multiplied with
the firing rate, f,(s;), averaged over the time interval between 40 and 65
msec after stimulus onset. The desired form of the DPA representation
of these stimuli is explicitly chosen as a Gaussian, U(s,), centered on
each stimulus position, s;:

(s = 5:)°

Usy) = exp( —2702> withs, €[sy —o,s;+al,k=1... M.

)

The width o = 0.6° was chosen such that Uj(s,) fits to the average RF
profile of all measured neurons (Fig. 24). To determine the basis
functions we minimize the average reconstruction error 3; (U; (s,) —
Ui(s;))? (Seung and Sompolinsky, 1993; Salinas and Abbott, 1994; Pouget
et al., 1998), which leads to:

N
enls) = D Lu(s)Qnl (4)

m=1

Here, Q,,, is the correlation matrix between the firing rates of neurons
n and m for all stimuli:

7
Qnm = zfn(si)fm(si)7 (5)

i=1

and L,,(s;) is:

7
L= > Uso) fuls). (6)
i=1

This amounts to an OLE for a vector-valued stimulus parameter (Salinas
and Abbott, 1994).

This estimator can then be extrapolated to obtain time-resolved DPAs
by replacing the averaged firing rate f,(s;) in Equation 2 by the firing rate
in a particular time interval. The coefficients c,(s;), by contrast, remain
fixed. This extrapolated DPA is the basis for investigating the nonlinear
interaction effects within the composite stimulus paradigm. We compare
the superpositions:
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Figure 2. A, Average RF, corresponding to the tuning for location, of all 178 recorded neurons. Based on the peak responses in the PSTHs (40-65 msec
after stimulus onset) each RF profile was smoothed by convolution with a Gaussian in two dimensions (width, 0.64°). RF centers were derived by
calculating the centroid of each profile (compare Fig. 1D3). For summation, the smoothed profiles were added with respect to their RF centers. The SD
was 0.6° (calculated for that part of the resulting average RF profile, which exceeded half of the maximal amplitude). This value of average RF width
matches the typical RF sizes found in area 17 of the cat (Orban, 1984). The vertical arrow indicates the spatial extension in terms of visual field
coordinates. B, Population representations of the elementary stimuli computed as two-dimensional DPAs over visual space after Gaussian interpolation
(compare Fig. 1). The construction was based on the activity of 178 neurons. DPAs were computed in the time interval between 40 and 65 msec after
stimulus onset corresponding to the peak responses in the PSTHs. The activation level is shown in a color scale normalized to maximal activation
separately for each stimulus (calibration bar at bottom right). Red indicates high levels of activation. The frame outlined in white depicts the area of the
visual field investigated as described in Figure 1C. In addition, the stimulus is shown as a square outlined in white. Note that for each stimulus the focal
zone of activation is approximately centered on the stimulus location. C, DPAs derived by means of an OLE for all seven elementary stimuli used. DPAs
were assumed as Gaussian profiles centered on each respective stimulus position. As in the interpolation procedure, neural activity was integrated
between 40 and 65 msec after stimulus onset. The width of the estimated Gaussian was chosen 0.6° to match the average RF width (tuning curve) of all
neurons measured (compare Fig. 24). The maxima of the OLE-derived distributions were aligned accurately on the position of each stimulus.

U395, 1) = Us(s, 1) + Uy, 1) 7) ter.s were weighted with thg normalized firing rate of each neuron
(Fig. 1D-F). Corresponding to the average RF profile of all
neurons recorded (compare Fig. 24), the width of the Gaussian
was chosen uniformly to 0.6% and (2) in addition, based on the

of the time-resolved DPAs for two elementary stimuli 5; and s5; with the
time-resolved DPAs of composite stimuli

N assumption that the representation of visual location can be
Ui“(si, t) = E cnlse) fulsis 575 1) (8) considered as a function of activation in parameter space, we
n=1 minimized the error for reconstructing one-dimensional distribu-

Uy (s, 1) is the extrapolated DPA that is based on replacing the rate  tions using the OLE procedure. This method is optimal in the
fu(s:) in Equation 2 by the firing rates f,(s;, 5;, #) that are observed in - genge that it extracts the available information from the firing
response to the corresponding composite stimulus. ..

rates under the condition of a least square fit.

RESULTS As a reference, we calculated DPAs in the time interval be-
Experimental results tween 40 and 65 msec after stimulus onset corresponding to the
Distributions of population activation of elementary stimuli peak responses in the PSTHs. Both approaches yielded equiva-

We constructed DPAs in response to a set of small squares of light lent results. The DPAs were monomodal and centered onto each
that only differ in their position along a virtual horizontal line and respective visual field position. For each stimulus, Figure 2B
that we termed elementary stimuli. The DPAs were defined in depicts the two-dimensional DPAs of all seven elementary stimuli
visual space and were based on single cell responses from 178 constructed by Gaussian interpolation. Figure 2C shows the OLE-
neurons recorded in the foveal representation of cat area 17. To derived one-dimensional DPAs. The spatial arrangement of ac-
obtain DPAs, we made use of two different approaches: (1) in a  tivity within these distributions implies that neurons in primary
two-dimensional Gaussian interpolation procedure, the RF cen- visual cortex contribute as an ensemble to the representation of
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (fop and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent

throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 * 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (4, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 = 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the

late time epoch.

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli

The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 * 4 msec after stimulus
onset as compared to 53 = 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30-80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 5. Constructed versus real position of the elementary stimuli
using the averaged spike activity during the entire time course of re-
sponses (30—80 msec). The position of the maximum of the DPA is shown
for the seven elementary stimuli as a function of the real stimulus
position. The dotted line indicates the perfect match between estimated
and real stimulus position. 4, The two-dimensional distributions as shown
in Figure 2 B were summed along the vertical axis to obtain the horizontal
position of the maximum only. Using the Gaussian interpolation method,
stimulus position can be estimated as well, but less accurate as compared
to the OLE-derived DPAs (average deviation for all elementary stimuli,
0.20 = 0.11°). B, Examination of the OLE-derived DPAs proved that the
estimator accounts for a high spatial accuracy during the entire neural
activation (average deviation for all elementary stimuli, 0.02 = 0.02°).

lus position during this investigated time window. The average
deviation was 0.20 = 0.11° for the interpolated DPAs and 0.02 =
0.02° for the distributions based on optimal estimation. The
optimal estimation allowed us to avoid reconstruction errors but
might suppress systematic errors that were revealed by the inter-
polation procedure (Fig. 54). Interestingly, in a recent psycho-
physical study, briefly presented stimuli have been found to be
mislocalized more foveally (Miisseler et al., 1999).

Nonlinear interactions: time-averaged inhibition

We addressed the question of neural interactions within the
population representation. If there were no interactions within
the population, then the DPAs of the composite stimuli would be
predicted to be the linear superpositions of the DPAs of the
component elementary stimuli. To test this null hypothesis, we
build DPAs based on the same estimator used for elementary
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stimuli, but now weighting the contribution of each cell with the
firing rate observed in response to the composite stimuli.

First, we examined interaction effects by comparing the time-
averaged (from 30 to 80 msec) population representations. Figure
6 illustrates the DPAs derived by interpolation; Figure 7 the
OLE-derived DPAs of composite stimuli and their superposi-
tions. Both the measured and the superimposed DPAs are mono-
modal for small, and bimodal for large stimulus separations, the
transition occurring at ~1.6° separation.

The most striking deviation from the linear superposition (Fig.
6, bottom; Fig. 7, dashed line) was a reduction of activity compared
to the measured responses (Fig. 6, top; Fig. 7, solid line), which is
particularly strong for small stimulus separations. This reduction
is not caused by a saturation of population activity because it is
also observed for composite stimuli of larger separations where
the distributions are bimodal and have little overlap. Note that in
this case the levels of activation in the composite representations
are even lower than for the corresponding elementary stimuli (see
Fig. 9B, horizontal arrow). A quantitative assessment of this in-
hibitory interaction allows to uncover its dependence on stimulus
distance. The total activation in the population distribution was
computed as the area under the distribution and is expressed as a
percentage of the total activation contained in the superposition.
This percentage is always <100%, indicating inhibition, which is
strongest for small distances and decreases with increasing dis-
tances (Fig. 8).

A slight gradient of the amplitudes and the time courses within
the DPAs of the elementary stimuli was assumed to account for
the asymmetric deviations of the measured distributions com-
pared to the superpositions at 1.2 and 1.6° stimulus separation
(Fig. 7). Therefore, interaction processes may amplify this inho-
mogeneity by shifting the maximal amplitude of the distributions
toward the nasally located stimulus component (for details, see
“Dynamic neural field model”). Note that the inhomogeneity
became additionally apparent in the superpositions of the
Gaussian-interpolated DPAs (Fig. 6). In contrast to the optimal
estimation procedure, this method does not normalize the small
gradient of amplitudes observed in the distributions of the ele-
mentary stimuli.

Nonlinear interaction: early excitation-late inhibition

To investigate the time structure of interaction, we further ana-
lyzed the OLE-derived DPAs by comparing representations of
composite stimuli either to the representations of elementary
stimuli or to their superpositions. We therefore calculated the
activation around the nasally positioned component because it
was at the same retinal location for all composite stimuli. As a
quantitative measure, we integrated activity within a band of
+0.4° around that particular visual field position (Fig. 94, vertical
arrow).

Figure 9B (solid line) displays the temporal evolution of activ-
ity at 5 msec intervals for the different composite stimuli (illus-
trated in Fig. 94). The response to the nasally positioned elemen-
tary stimulus alone is shown as a dashed line. There are notable
differences between elementary and composite stimuli in an early
and a late response epoch. At small separations between the
component stimuli, the response has a 7 msec shorter latency
(p < 0.001, ANOVA) as compared to the single stimulus condi-
tion. This is accompanied by an earlier onset of the decay of the
population activity. By contrast, the late part of the response is
always inhibited.

For quantitative evaluation, we divided time into an early
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Figure 6. The measured two-dimensional DPAs (top) of composite stimuli (from left to right, 0.4-2.4° separation) were compared to the superpositions
of the representations of their component elementary stimuli (bottom). The DPAs were based on spike activity of 178 cells averaged over the time interval
from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B, the color scale was normalized to peak activation separately for each column.
For small stimulus separation, note the remarkably reduced level of activation for the measured as compared to the superimposed responses. The bimodal
distribution recorded for the largest stimulus separation comes close to match the superposition. However, inhibitory interaction can still be observed.
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Figure 7. The OLE-derived DPAs for the composite stimuli as depicted in Figure 6. Solid lines mark the measured activations, and dashed lines show
the calculated superpositions (vertical lines mark stimulus positions). Peak activation was uniformly normalized. As demonstrated for the interpolated
two-dimensional DPAs, the level of measured activation was systematically reduced for smaller stimulus separations but approached linear superposition
for larger separations. The transition from monomodal to bimodal distributions was found between 1.2 and 1.6° separation. A slight asymmetry of the
amplitudes between the representations of the left and the right stimulus component was found for the measured as compared to the superimposed

distributions for stimulus separations of 1.2 and 1.6°.

(30—45 msec) and a late (45-80 msec) epoch. For the early
period, we compared the population representation of composite
stimuli to the superpositions. Because we expect to find excitatory
interaction, this is a conservative comparison, because saturation
effects would tend to limit the responses. The solid line in Figure
10 shows the difference between the activation in response to the
composite stimuli and the activation in the superimposed re-
sponses expressed in percent of the latter. In this early response
epoch, there was more activation in the measured than in the
superimposed responses at all distances except the largest (2.4°).
This excess activation, which reached a maximum of 58% at a
stimulus distance of 1.6° is evidence of distance-dependent exci-
tatory interaction during the build-up phase of the DPAs of
composite stimuli.

That the activation with composite stimuli exceeded even that
of the superpositions demonstrates that response saturation is not
the cause of the apparent inhibitory interactions observed in the

time-averaged analysis. Accordingly, the time-averaged inhibi-
tory effect (compare Figs. 6, 7) originates from the late response
epoch of 45-80 msec after stimulus onset. For this epoch, the
dashed line in Figure 10 shows the relative difference of responses
to composite as compared to elementary stimuli. At all stimulus
separations, the difference is negative, indicating inhibition below
the activation level for a single stimulus. This inhibition is slightly
stronger for larger stimulus separations, providing further evi-
dence for distance-dependent late inhibitory interaction. More-
over, it confirms that response saturation is not an explanation for
this inhibitory effect.

Spatial interaction: repulsion effect

The neural field model predicts (see next section) that inhibitory
interactions are dominant at larger distances, resulting in a re-
pulsion effect for the apparent position of two stimulus compo-
nents. We tested this prediction using the OLE-derived distribu-
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Figure 8. Reduction of the DPA magnitude induced by composite stim-
uli as a function of separation between the two component stimuli,
calculated for the time-averaged responses (30—80 msec). The total acti-
vation in the distribution was expressed as percentage of the total activa-
tion in the superposition. The dashed line marks results from the OLE-
derived DPAs, the dotted line depicts results from the two-dimensional
distributions (Gaussian interpolation). For both ways of construction,
inhibition was strongest for zero distance (66% for the OLE-derived, 68%
for the interpolated data) and decreased almost monotonically with in-
creasing distance, but was still present at the largest separation tested (2.4°).

tions. As described, the DPAs were bimodal at stimulus
separations between 1.6 and 2.4°. In fact, at these distances we
found that the maxima of the DPAs were shifted outward by
~(.3° as compared to the corresponding maxima of the superpo-
sition (Fig. 11). This repulsion effect was particularly strong in the
time window of 60—-80 msec after stimulus onset, where inhibition
is dominant.

Note that all results concerning interaction and temporal evo-
lution were equivalent when obtained from the two different
approaches of DPA construction.

Dynamic neural field model

A theoretical model of the temporal evolution of the population
representation and the interaction effects is formulated to sub-
stantiate our theoretical interpretation of the results. The model
is embedded in a general framework that bridges neuronal and
behavioral levels of description (for review, see Schoner et al.,
1997). The elementary stimuli flashed at different positions on a
horizontal line in the visual field are thought of as defining a
one-dimensional space, in which the dependence of interaction
on distance is probed. At each position, x, an activation variable,
U(x), is introduced that defines a field of neural activation along
the horizontal dimension of visual space.

This neural field is assumed to evolve continuously in time
under two different types of inputs: (1) afferent input from
sensory stimulation activates those regions of the field that rep-
resent the specified values of the parameter space; and (2) inputs
from interaction processes within the field exert excitatory or
inhibitory effects onto the field. What locations excite or inhibit
each other is determined by interaction kernels w,(x) and w,(x),
respectively. These are derived under the assumption that nature
and strength of the interactions between different sites in the field
depend on the distance between those sites. The identification of
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appropriate kernels, which can explain the overall time scale of
build-up and decay as well as the spatial width of the measured
population responses, is thus the primary modeling task. The
modeling is not aimed to reproduce the experimental data in all
detail, but to identify a simple mathematical description that can
be used to support and clarify the interpretation of the main
experimental findings.

As a rule, the response of the neural population to briefly
flashed visual stimuli is transient. The time structure of the DPAs
reveals dynamic properties of the cortical neural network that go
beyond passive filtering. We refer to such responses as active or
self-generated transients. To account for this nontrivial time
structure of the population response, we introduce a second
variable at each site of the field. This variable is excited by
activation in the u field and inhibits, in turn, that field at the
corresponding site.

The mathematical description we use is:

Tu(x,t) = —u(x,t) +h+S(x, 1) +

+ F(u(x, t))[jwu(x —x")F(u(x', t))dx' —v(x,t)

w(x,t) = —v(x, t) + fwv(x —x")F(u(x', t)dx'. 9)

A similar mathematical framework has been used by Amari
(1977) to discuss the dynamics of pattern formation in cortical
neuronal tissues. He focused primarily on stable stationary states,
consisting of localized peaks of activation, whereas only spatially
homogeneous (nonlocal) patterns were studied as transient
solutions.

The lateral connections are functions of the distance (x — x") of
positions x, x’ in visual space. Numerical studies with different
types of kernels (e.g., Gaussians, exponentials, rectangular forms)
revealed that the interesting qualitative properties of the solu-
tions of Equation 9 are largely independent of the particular
analytical form of the kernels w, and w,, as long as they preserve
characteristic relationships of amplitude of inhibition and excita-
tion as well as of the spatial range of these two factors. The
simulations shown below are based on two Gaussians:

, (x —x')?

w,(x, x') = Aexp T (10)
) (x —x')?

WV(X, X ) = Avexp _270_5

where the amplitudes A, A, and the range parameters o, o, are
positive constants. A general constraint arises from the require-
ment that the excitatory response does not spread out. This
imposes that the spatial range of inhibitory interactions must
exceed that of excitatory interactions (o, > o).

The threshold function F in Equation 9 must be monotonically
increasing and nonlinear, but again its particular functional form
is of little importance for the qualitative behavior of the field
dynamics. We used the well-known sigmoidal function F(u) =
1/[1 + exp(—bu)]. For given interaction kernels, a lower limit for
the slope b > 0 can be obtained such that the existence of
self-generated, transient responses is guaranteed.

The interaction terms are multiplied by the state-dependent
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Figure 9. Time-resolved analysis of interaction effects based on integrals of DPAs in a 0.8° wide band around the location of the nasally positioned
elementary stimulus (4, vertical arrow). The different composite stimuli are shown in column 4. Column B contrasts the OLE-derived DPAs to composite
stimuli (solid line) with the responses to the single nasally positioned elementary stimulus (dashed line). At small distances, the activation to composite
stimuli had a significantly smaller latency accompanied by an earlier onset of the decay of the population activity as compared to the elementary stimuli.
The late part of the responses to the composite stimuli was characterized by an overall inhibition. The arrow marks that peak activation in response to
the composite stimulus of largest separation is still below activity measured in the single stimulus condition. Column C displays results of simulations
of the dynamic neural field model scaled to match the experimental stimulus conditions. Parameter values used for this simulation are: A, = 5.2, 4, =
4,0,=150,=25A,=4,B,=10,b =1, h = — 3, 7 = 15. The arrow marks that inhibition can still be seen at the largest probed distances between

the component stimuli.

sigmoidal signal F(u). This factor prevents the asymptotic tran-
sient response to fall below resting level because only those sites
in the field that are sufficiently activated are susceptible to inhib-
itory interaction.

The parameter 7, Equation 9, determines the overall time scale
of build-up and decay of the field activity and can be adjusted to
reproduce qualitatively the measured time course of population
activity changes. In the numerical studies, we have used the value
7 = 15. A fixed criterion (5% above resting level) was used to
define the response onset in the experiments. For the simulations,
the afferent transient stimulus S(x,¢) at position x, applied for a
duration At = 25 msec, is a Gaussian profile characterized by its
strength, A, and width parameter, 20. The choice of o fixes the
spatial units relative to the experimental space scale. All range
parameters used in the model simulations were chosen as multi-
ples of o = 5, which represents 0.2° in visual space.

If this transient external input creates enough excitation within
the field, the excitatory response develops a single spatial maxi-
mum located at the center, x, of the stimulated segment. This is
followed by a process of relaxation to the resting state driven by
increasing inhibition in the field. The activation level of this

resting state is a homogenous and stable solution of the model
dynamics, fixed by the parameter h < 0 (h = —3 for the simula-
tions shown here).

Simulation results

Figure 9 compares the temporal evolution of population activa-
tion in the experiment (B) and in the model (C). Composite
stimuli with six spatial separations were used. The same normal-
ization procedures for the simulated data were applied as for the
experimental data. To further facilitate the comparison of theory
and experiment, a time interval of 25 msec before stimulus onset
was added, so that the field dynamics has relaxed to its resting
state. This time window accounts for the temporal delay between
the stimulus presentation and the cortical response in the
experiment.

Distance-dependent early excitation and late inhibition are
observed by comparing the temporal evolution of the field in
response to the single input at the nasal location. Note that in the
experiment, the limit case of two independent peaks not inter-
acting at all is not reached even at the largest probed distances
between the component stimuli. At that largest separation, an



Jancke et al. « Population Dynamics within Parametric Space

< 00T ]
S [ _
g 40r 30 - 45 ms )
5 I ]
© 20r ]
o°
9 I ]
8 of ]
S L ) .
3 e 45 - 80 ms ]
£ _o0f T TN o v
L 1 1 1 yI — B ]
0.5 1.0 1.5 2.0 2.5
separation distance [deg]
Figure 10. Interaction effects analyzed in two separate time intervals.

The OLE-derived DPAs were integrated within a band of 0.8° width
around the nasally positioned stimulus component. For the early response
epoch, between 30 and 45 msec after stimulus onset, we computed the
relative difference between the activation in the distribution of the com-
posite stimulus and the superposition. This difference (solid line) is shown
as a function of the spatial separation of the two stimulus components.
Note that the positive values peaking at 1.6° with 58% enhancement
remain positive up to 2.0°. This excess activation is indicative of excitatory
interaction in this early response time interval. For the response epoch
between 45 and 80 msec, we computed the relative difference between the
activation in the distribution of composite stimuli, and the activation in
response to the single nasally positioned elementary stimulus (dashed
line). For all separations, this difference was negative, reaching ~25%
inhibition at 2.0°% indicative for inhibitory interaction. The distinct inhi-
bition still present at the largest separation makes it unlikely that a local
saturation effect can explain this observation. For the two epochs, the
different types of analysis used provide a conservative estimate: for
excitatory interaction in the first case, for inhibitory interaction in the
second case (for details, see Results).
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Figure 11.  Spatial repulsion effect. Repulsion was computed in the time

slices between 60 and 80 msec after stimulus onset where inhibition is
dominant. The distances between the activity peaks in the bimodal DPAs
(OLE-derived) for stimulus separations of 1.6-2.4° were compared to the
respective superpositions. Differences were depicted as shifts of repulsion
dependent on stimulus separation. Maximal spatial shift amounts to 0.3°.

inhibition effect can still be seen in the time course of activation
(Fig. 9B,C, horizontal arrows).
In the spatial domain, nonlinear interactions are observed as
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Figure 12. Simulation of the repulsion effect. Shown are the simulated
DPAs in response to the composite stimuli of 2.0° (4) and 2.4° (B)
separation (solid lines). These are compared to the superpositions (dashed
lines). The two vertical lines mark the position of the elementary stimuli.
The same values of the model parameters were used as in Figure 9C.
Repulsion is manifested by an outward shift of the maxima.

differences in shape and location of the time-averaged spatial
profile (Fig. 124,B) of the calculated superposition compared to
the composite stimulation. In the model, the two excited regions
attract each other to unite into one excited region when they
interact directly through the excitatory connections. Conversely,
when two peaks of activation are induced at somewhat larger
distances, they interact primarily through the longer range inhib-
itory interactions, and this leads to the documented repulsion of
the two peaks.

To further emphasize the role of time in the interaction pro-
cess, we have explored the influence of a small inhomogeneity (up
to 5 msec) in the temporal evolution of the field on the emerging
activity patterns. A slightly faster growth of activation at one field
site causes an asymmetry in the competition strength between
neighboring activity peaks. In each time step, the activity-
dependent strength of inhibition exerted by the other local exci-
tation is always smaller for the temporally privileged location.
This imbalance finally leads to a difference in peak amplitude at
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Figure 13.  Effect of a nonhomogeneous, position-dependent evolution of
field activity. The time-averaged response period of the superposition
(dashed line) and the response to composite stimuli (solid line) are com-
pared for a separation of 1.6°. A reduction of input strength (30% in the
simulation shown here) for the right stimulus leads to a delay in temporal
evolution at this particular field site. Because this reduction has little effect
on the response maximum in the single stimulus condition, the time-
averaged superposition profile is still symmetric. As a result of field
interactions, a significant decrease of activity at the right position occurs
when the two stimuli are applied together.

the two stimulation sites. Note, however, that the averaged super-
position profile can still be symmetric when the mechanism that
causes the difference in the temporal evolution has little effect on
the maximum peak response of the elementary stimuli. This con-
dition can easily be met by introducing a position-dependent slight
variation of the input strength (compare Figs. 7, 13).

DISCUSSION

Effects of interaction across distributed cortical representations
are widely discussed as an important aspect of cortical function.
If interaction contributes significantly to neural activation in
visual cortex, then representations of the visual environment will
differ from a simple feedforward remapping of visual space. To
investigate the presence and magnitude of interaction processes in
cat primary visual cortex, we constructed DPAs from the activity of
an ensemble of neurons in response to single squares of light.

Construction of distributions of population activation
Using two different approaches, DPAs were defined in parameter
space of the visual field which enabled us to analyze ranges of
excitatory and inhibitory interactions in terms of the stimulus
metrics.

Instead of asking how accurately the parameter of stimulus
location can be reconstructed or decoded, we primarily were
interested in analyzing interaction-based deviations of population
representations dependent on defined variations of stimulus con-
figurations. Accordingly, there is an important point of departure
from the interest we share with aspects relating to estimation
theory. Our analysis aimed to investigate how the representation
of retinal position evolves in time and how it is affected by
interaction among neurons. Besides, reading out discrete sample
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points such as peak maxima does not imply that the brain actually
uses such measures for decoding.

When composite stimuli consisting of two squares of light were
used, the deviations of the distributions from additivity were
considered as active contributions from neural interaction, i.e.,
how interactions distort the distribution of activation. We con-
clude that such contributions can be regarded as additional infor-
mation generated by the neural system dependent on context and
its actual state.

It is important to note that both approaches used to derive
DPAs revealed qualitatively equivalent results, implying that the
exact way of how the distributions were constructed was not
crucial for the observed interaction effects.

Interaction within the population representation of
composite stimuli

The use of time-resolved DPAs allowed us to identify signatures
of interaction processes that were dependent on time and on the
distance of the composite stimuli. In the first 30-45 msec after
stimulus onset we found evidence for excitatory interaction,
which decreases with increasing distance between the two com-
ponents. In contrast, when activation was integrated over the later
part of the response (45-80 msec after stimulus onset), inhibitory
interaction dominated. We provided several arguments that ex-
clude saturation of neural firing rates as an alternative
explanation.

An additional indication for the presence of inhibitory inter-
action was found by analyzing the spatial shapes of the DPAs.
Mutual repulsion of the maxima of the DPAs was observed at
stimulus separations between 1.6 and 2.4°, at which the distribu-
tions were bimodal. Such repulsion effects qualitatively match
psychophysical results obtained from humans. Errors incurring
when human subjects estimate the visual distance between two
spots of light depend systematically on the retinal distance of the
stimuli. Small separations are underestimated, large distances are
overestimated (Hock and Eastman, 1995). Similar results have
been obtained for estimation of the orientation of stimuli (Wes-
theimer, 1990; for theoretical modeling see Lehky and Sejnowski,
1990). In addition, mislocation effects have been described for
other sensory modalities, such as the tactile saltation effect (Gel-
dard and Sherrick, 1972), supporting the assumption of a general
cortical nature of such phenomena (Kalt et al., 1996).

Dynamic neural field model

A dynamic neural field model was introduced for theoretical
treatment of the dynamics of neural population activity (Schoner
et al., 1997). Models of the same mathematical format have been
proposed in the past as models of dynamic cortical processing
(Wilson and Cowan, 1973; Amari, 1977). It is important to note
that the entire set of experimental results could be accounted for
from a single set of parameter values. The construction of the
population representation was used to map neural data onto the
visual field. Correspondingly, the neural field was likewise de-
fined over visual space. The activation variables u and v in
Equation 9 represent the accumulated excitation and inhibition
within the population of neurons. The structure of the postulated
interaction function consists of both excitatory and inhibitory
coupling. Because the amplitude of the excitatory contribution to
interaction is higher and its spatial extent is narrower than for the
inhibitory contribution, the net interaction within the represen-
tation is excitatory over short distances in visual space, and
inhibitory at larger spatial separation.
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The absolute values of range parameters used for the numerical
studies revealed that the excitatory and the inhibitory processes
extend over a range of 0.6 and 1.0° of visual field, respectively.
The strength of inhibition and excitation strongly influences the
width of the emerging activity distribution, and thus the spatial
separation at which a transition from a monomodal to a bimodal
representation occurs. Our simulations showed that even those
representations that overlap only for the smallest separation still
can reveal the effect of late inhibition and early excitation, indi-
cating that the width of the distributions has only little effects on
the time course of interaction. A small number of parameters were
sufficient for modeling the complex spatiotemporal responses from
many different cell types combined at a population level.

Relationship of our results to single cell analysis
Interaction profiles have been repeatedly examined at the level of
single cells (Movshon et al., 1978; Heggelund, 1981a,b; Nelson,
1991; Tolhurst and Heeger, 1997). In those studies, the activity of
a cell induced by a single stimulus at the RF center was compared
to the activity of the cell in the presence of a second stimulus
presented at varied locations.

In contrast, the population approach used here performs two
different types of averages. First, because our stimuli were not
RF-centered, we average across different spatial locations within
the RFs (cf. Szulborski and Palmer, 1990). Outside the labora-
tory, visual objects are similarly distributed in arbitrary ways
across RFs, so that this way of stimulus presentation and averag-
ing is crucial for an understanding of how complex scenes are
represented in visual cortex.

Second, we average across many different cell types. Neurons in
area 17 contribute potentially to the representations of many
different parameters such as retinal position, orientation, curva-
ture, length, motion direction, etc. To characterize the contribu-
tion of each neuron to the representation of stimulus location, one
might conceive of the high-dimensional space spanned by these
different parameters. Each neuron could be thought of as a point
in this parametric space. This point corresponds to a set of
preferred values for all represented parameters. By asking only
how the firing rate of the neuron depends on visual field position,
the contributions of all neurons are averaged, although their
preferred parameter set may be different along other dimensions.
In this sense, the DPA is a projection from a potentially high-
dimensional space onto a common neuronal space representing
only visual field position. The DPA could thus be viewed as a
neural population receptive field of the inverted cortical point-
spread function (“cortical spread-point function”).

The shape of the DPA matters

Population coding ideas have largely been centered on estimating
the stimulus or task parameter from the activity of populations of
neurons (Georgopoulos et al., 1986, 1993; Vogels, 1990; Zohary,
1992; Seung and Sompolinsky, 1993; Salinas and Abbott, 1994;
Groh et al., 1997). Compared to vector-based population tech-
niques, the current approach focused on the concept of an entire
distribution of population activation (Lee et al., 1988; Bastian et
al., 1997; Pouget et al., 1998) (for related attempts, see Anderson,
1994a,b; Zemel et al.,, 1998, in which they seek to recover a
probability distribution of activity over the encoded variable). In
our approach, the distribution is significant not only by a mean
value of the represented parameter, but also through its shape.
Consequently, asymmetric deformations of the DPA could be
detected, in which two peaks in the DPA are repelled from each
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other at sufficiently large stimulus separations. This effect is
observable only by taking the shape of the constructed DPA into
account and would be detectable neither on the basis of PSTH
responses of individual cells nor in reconstructions that estimate
only single values or discrete samples of parameters.

Relationship of our results to cortical maps

In principle, our time averaged two-dimensional DPAs are equiv-
alent to activities recorded in functional imaging studies such as
functional magnetic resonance imagine, positron emission to-
mography, and optical imaging of intrinsic signals assuming a
clean retinotopy. There are a number of differences, however.
Besides the limitations of these techniques to resolve the milli-
second time scale as accomplished by our single cell recordings,
the main problem arises from the fact that the retinotopy is far
from coming close to a clean representation of the visual field (cf.
Das and Gilbert, 1997). This is particularly obvious at the spatial
scale of our investigation, which differentiates between visual
angles <1° apart (Hubel and Wiesel, 1962; Albus, 1975). Analysis
of the cortical point-spread function has shown that the process-
ing of even very small stimuli is associated with a widespread
pattern of cortical activation (Grinvald et al., 1994; Godde et al.,
1995; Chen-Bee and Frostig, 1996). In addition, imaging methods
as listed above do not solely reflect spike activity but include
contributions from glial cells and cerebral blood flow. Accord-
ingly, comparison of DPAs spanned in parametric space with
cortical activation maps recorded with such imaging techniques
may allow separating neural and non-neural contributions.

A dynamically distributed processing over a large cortical area
possibly reflects a major role in neural strategies of cooperative
interaction. Observations in real-time imaging studies supported
this assumption because the firing of single neurons can be
predicted if the whole pattern of cortical population activation is
taken into account (Arieli et al., 1996; Kenet et al., 1998). Be-
cause our approach allows for a functional interpretation of
cortical activation patterns, it may serve to find transformation
rules that map the multidimensional visual input onto cortical
representations.
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