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Abstract. Experiments probed the dynamic properties of 
stimulus-evoked (,~ 10 Hz) oscillations in somatosensory 
cortex of anesthetized rats. Experimental paradigms and 
statistical time series analysis were based on theoretical 
ideas from a dynamic approach to temporal patterns of 
neuronal activity. From the results of a double-stimulus 
paradigm we conclude that the neuronal response 
contains two components with different dynamics and 
different coupling to the stimulus. Based on this result 
a quantitative dynamic model is derived, making use of 
normal form theory for bifurcating vector fields. The 
variables used are abstract, but measurable, dynamic 
components. The model parameters capture the dynamic 
properties of neuronal response and are related to experi- 
mental results. A structural interpretation of the model 
can be given in terms of the collective dynamics of neur- 
onal groups, their mutual interaction, and their coupling 
to peripheral stimuli. The model predicts the stimulus- 
dependent lifetime of the oscillations as observed in ex- 
periment. We show that this prediction relies on the basic 
concept of dynamic bistability and does not depend on 
the modeling details. 

1 Introduction 

Stimulus-evoked oscillatory responses in the alpha range 
in primary cortical and thalamic structures have been 
studied for a long time (e.g., Bishop and O'Leary 1936; 
Andersen and Andersson 1968) on the EEG [see Basar 
(1980) for a review; Basar et al. 1992) and the single-cell 
level [see Steriade et al. (1990) for a review]. The func- 
tional role of these rhythms has remained elusive. Hy- 
potheses include "gating" of sensory input (Llimis and 
Sasaki 1989) and contributions to temporal properties of 
receptive fields (Dime et al. 1990). An important question 
for such functional interpretations is how the oscillatory 
response depends on the temporal structure of the stimu- 
lation. In the earlier studies such dependence has been 
looked at mainly in terms of effects on response ampli- 
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tude. For instance, Aitkin et al. (1966) showed that the 
amplitude of the oscillatory response is modulated as the 
interval between two subsequent stimuli is varied. Sim- 
ilar results were obtained by Adrian (1941) and Chang 
(1950). 

In this study we address in detail the question of how 
the temporal structure of the oscillatory response de- 
pends on the temporal structure of the stimulation. We 
refer to experimental data reported in part in Sch6ner et 
al. (1992). Evoked ( ,~ 10 Hz) oscillations were observed 
in single-cell (extracellular) recordings from the hindpaw 
representation in area SI in the somatosensory cortex of 
anesthetized rats. Stimulation consisted of computer- 
controlled taps within the receptive fields. A two-stimu- 
lus paradigm was used in which a first stimulus started 
the oscillation and a second stimulus was placed at speci- 
fic phases of the ongoing oscillation. Earlier empirical 
studies (Chang 1950; Andersen and Andersson 1968; 
Llin~ and Sasaki 1989) reported qualitatively that an 
oscillatory response started by a conditioning stimulus 
can be "reset" by a subsequent test stimulus. 

We found (1) that the complete phase resetting curve 
is continuous, indicating that the coupling between oscil- 
latory response and the stimulus is phase dependent and 
(2) that two response components must be distinguished, 
only one of which can be reset in the sense reported 
earlier. The transfer component (TC), visible as a short 
latency response immediately after a peripheral tap, is 
strictly stimulus locked and can be evoked any time. The 
oscillatory component (OC), visible as 2-7 peaks in the 
poststimulus-time histogram (PSTH) [or in averaged or 
unaveraged local field potential (LFP) recordings] is 
stimulus locked only when elicited from the resting state. 
But once started the detailed timing of the OC with 
respect to a second stimulus within the ongoing re- 
sponse depends on the current phase of oscillation and 
varies between the two extremes "resetting" and "going 
through". 

In this article we present a theoretical approach to 
temporal structure in neuronal response that is based on 
the ideas of collective variables and nonlinear dynamics. 
The theoretical strategy is used to construct an exem- 
plary model for stimulus-evoked oscillations. We derive 
the dynamic properties of temporal patterns in this 
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model and perform further analysis on the experimental 
data of Sch6ner et al. (1992) to verify these predictions. 

The theoretical ideas differ somewhat from the typical 
neuronal modeling approach, but are related to work in 
neuronal and behavioral patterns of coordinated move- 
ment [for review, see Schrner and Kelso (1988)]. Three 
assumptions form the basis of the theoretical strategy: (1) 
the temporal structure of neuronal response is reflective 
of the activity of neuronal groups and can be character- 
ized by effective or collective variables; (2) the generation 
of this time structure can be understood as resulting from 
dynamic laws which represent the collective properties of 
the neuronal groups and which can be modeled as equa- 
tions of motion of the collective variables; (3) stimuli act 
on these dynamics as time-dependent forces. The dy- 
namic variables are related to the experimentally observ- 
able neuronal response in terms of measures of temporal 
structure such as peak latencies, interpeak intervals, and 
peak amplitudes (see below). Their dynamics are con- 
strained by mapping observed stationary and self- 
generated time structure onto attractor solutions. To 
determine an actual functional form of a concrete dy- 
namical model the definition of attractors and their stab- 
ility as a function of experimental parameters must be 
supplemented by additional, more technical, assump- 
tions (e.g., smoothness of the vector field and symmet- 
ries). Despite the phenomenological spirit of this strategy, 
we are able to show that such abstract dynamic models 
possess predictive power. A strong point is that model 
parameters relate directly to observed patterns. More- 
over, the approach generates experimental paradigms 
and methods of analysis. 

In Sect. 2 the experimental methods, extracted 
measures, and main experimental results are reported. In 
Sect. 3 a dynamic model is constructed and analyzed, 
and its parameters are related to experiment. A testable 
prediction is derived from the basic concept of dynamic 
bistability and is compared with the experimental data. 
The relation of the theoretical approach developed here 
to reductionistic neuronal modeling is clarified. 

2 Experiments 

2.1 Methods 

Details on animal preparation and recording techniques 
were reported in Schrner et al. (1992). Rats were anesthe- 
tized (Nembutal in 2 rats, Urethan in 31 rats) and placed 
in a stereotactic apparatus. Recordings were made from 
the SI area with glass microelectrodes (1-2 Mfl) filled 
with concentrated NaC1. Both single unit and multi unit 
activity was stored on a personal computer. Field poten- 
tials were obtained simultaneously from the same 
electrode. 

2.2 Data analysis 

Neurophysiologists have used double-stimulus para- 
digms for decades, although often motivated by other 
concerns (e.g., Movshon et al. 1978; Ganz and Felder 
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Fig. 1. Summed post-stimulus-time histogram (PSTH) derived from 
the double-stimulus paradigm from unit 18 with 32 repetitions. Binsize 
equals 5 ms. The labeling of peaks is indicated in terms of peak times 
(time of maximal spike rate). In addition, we extracted peak amplitudes 
(maximal spike rate for each peak) and peak masses (area under a peak). 
The time of the second stimulation is indicated by the arrow at 310 ms. 
Note that the first cycle time Z1 = TI - To equals 109 ms, whereas the 
cycle time Z~ = Ti - T~ equals 74 ms. The difference T~ - 7"3 equals 
92 ms, which is identical to the cycle times Z2 and Z3. This is an 
example where the oscillatory response "goes through" the second 
stimulation 

1984). In the context of oscillatory response components 
the paradigm has been used repeatedly (Aitkin et al. 1966; 
Andersen and Andersson 1968; Llin~s and Sasaki 1989), 
although the temporal structure of the oscillatory re- 
sponse has not been systematically and/or quantitatively 
analyzed in these cases. Such analysis is done here on the 
basis either of post-stimulus-time-histograms (PSTHs) 
obtained from single and multi unit activity or of aver- 
aged, and in some cases individual, local field-potential 
records. In both cases, the analysis proceeds in interac- 
tive computer displays in which peaks of activity can be 
recognized visually or based on algorithms (see Fig. 1 for 
illustration). The parameters - time of occurrence of 
a peak Ti and response amplitude at the peak At - are 
determined for each peak. In the case of PSTH-based 
analysis, the mass of the peak Mi (number of action 
potentials in a peak which is delimited by minima of 
activity) could likewise be extracted. The peaks are num- 
bered beginning from the last stimulus applied, with the 
peaks following the conditioning stimulus referred to by 
the unprimed letters, T~, At, and Mi, and the peaks follow- 
ing the test stimulus referred to by primed letters, T[, A~, 
and M~. From the peak measures we derive cycle times 
Zi = T~+ 1 - Ti (correspondingly for the primed 
measures). We call To the latency of the response. To 
quantify the relative width of a peak, we consider the 
ratio of peak mass to peak amplitude, W~ = MJA~. 

For a given cell, we varied the interstimulus inverval 
(ISI) between conditioning and test stimulus from 40 to 
350 ms in steps of 10 ms, and up to 1000 ms in 100 ms 
steps. This led to 39 conditions per cell (that means, we 
recorded 39 PSTHs per cell, each PSTH derived from 32 
repetitions). To obtain estimates of the properties of the 
oscillations evoked by a single stimulus we pooled all 
measures derived for the first four peaks in the response 
to the conditioning stimulus as long as they occurred 
before the second tap. We call the resulting ensemble the 



oscillations per se (OPS). The second ensemble was built 
from the primed measures derived from the responses to 
the test stimulus. This was used to study effects of ISI on 
the response measures reflecting state dependence of the 
stimulus coupling. 

2.3 Results 

Of a total of 48 cells recorded, 25 cells were selected for 
detailed quantitative analysis on the basis of having 
a complete ISI scan. The temporal characteristics are 
reported from the PSTH analysis only, because all tem- 
poral effects have been reproduced with LFP  recordings. 

The analysis of the quantitative measures of response 
time structure, Ti, Z~, Ai, and M~, for the OPS ensemble 
revealed that the first peak of the response, which ap- 
pears on the average at latency To = 21.7 ms (_  0.8 in 
repetitions of PSTH for the same cell/__+ 2.1 across cells), 
differs from the subsequent peaks: 

1. The first cycle time is larger than subsequent ones 
(significant I for 91% of cells), whereas in most cells we 
found no significant difference among the subsequent 
cycles (Z2 ~ Za, for 9%). On the average we found 
Z~ = l19.9ms (___ 5.4/17.6), Z2 = 96.6ms (__+ 7.2/12.0), 
Z3 = 84.4 ms (+  11.2/11.4). 
2. The first peak is less variable in timing than the 
following peaks [SD(T1.2,3) > SD(To), for 100%]. 
3. The shape of the first peak differs from the subsequent 
peaks, being much sharper (W1,2,3 > Wo, for 100%, with 
Wl ,~ W2 ~.~ W3 ~ 5 Wo). 
4. Obviously, the first peak has much higher amplitude 
for all cells. Importantly, the amplitudes of the sub- 
sequent peaks do not differ from each other significantly. 
This means, in particular, that the oscillation does not 
have the appearance of a damped transient oscillation. 
5. The initial response peak can be elicited reliably every 
time by stimulation, whereas the following peaks occur 
probabilistically in variable numbers. These peaks have 
a probability of not occurring at all. Further support for 
the distinction between the initial response peak and the 
subsequent oscillatory peaks is provided by the analysis 
of the effects of repeated stimulation (see below). 

To select cells for the detailed analysis of the effect of 
ISI on the temporal structure of the response to the test 
stimulus, we employed the restrictive criterion that for at 
least one ISI condition the PSTH shows a discernible 
fourth peak preceding the test stimulus (there were 
roughly 11 possible ISI conditions where a fourth OPS 
peak would fit into the interval before the test stimulus). 
Eleven cells of 25 (or 44%) were oscillatory in this sense. 
These cells were now analyzed with respect to the influ- 
ence of the test stimulus on the response characteristics 
by comparing primed measures with OPS measures. We 
found Z'I < ZI (significant for 82% of oscillating cells), 
Z~ < Z2 (55%), and no significant difference between 

1 To compare mean values and variabilities we employed here and 
below, standard T- and F-test procedures. All stated results refer to 
a significance level of 1% 
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Z~ and Z3. This indicates that the oscillation after the 
test stimulus is not simply a restarted version of the 
response to the conditioning stimulus, because in that 
latter case we would expect Z~ to be equal to Z1. 

To examine the functional dependence on ISI of the 
timing of oscillatory peaks after the test stimulus we 
plotted peak times as a function of ISI. The effects are 
salient for cells with very pronounced oscillations. The 
oscillatory peaks tend to lie close to those points in time 
where they would be expected if the oscillation started by 
the conditioning stimulus had "gone through" (cf. Fig. 1 
and Fig. 5C). In cells with less pronounced oscillations 
this effect is not as salient. Statistical tests of Z~ showed, 
however, that this quantity is significantly more variable 
than the corresponding Z~, indicating an effect of ISI. 
(The corresponding F test is equivalent to a one-factor 
analysis of variance testing for the effect of ISI.) 

3 Dynamic theory 

3.1 Modeling the two dynamic components 

Following the theoretical strategy outlined in Sect. 2 we 
introduce variables to capture the observed response 
behavior. Graded and signed variables are assigned sep- 
arately to the two response components with different 
dynamical properties. While it is not intended to model 
detailed response time curves (because these are not 
reproducible), the variables may best be compared with 
local field potentials. 

The TC, modeling the short latency response, must 
span an at least two-dimensional phase space in order to 
account for the observed nonzero latencies. Restricting 
the modeling to the minimal two dimensions ux, u2, we 
assume that by choice of coordinates the observed com- 
ponent is ut. For mathematical convenience we combine 
the two real variables into a single complex variable 
u :=  ul + iu2. The transient response is described as 
relaxation to a single fixed point of, in leading order, 
a linear dynamics: 

= c,u 

cu := a, + i~% (1) 

(Ou represents the eigenfrequency and ~, the negative 
damping of the TC. For stability we require ~t~ < 0. The 
stimulus is described in leading order by a time-depend- 
ent, additive force: 

= c,u + FS(t) 

F : =  F1 + iF2 (2) 

A single stimulus event (a tap to the hindpaw) is repres- 
ented as a delta pulse, 5 ( t -  to), where to is the time of 
stimulation. A series S(t) of stimulation events at times 
tl, i = 0, 1 , . . . ,  with identical strength is represented by 
the sum 

S(t) := ~, 5(t - ti) (3) 
i 
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Fig. 2. Bifurcation diagram for the variation of a parameter ~ measur- 
ing the strength of stimulation. Continuous lines correspond to ampli- 
tudes of stable, oscillatory solutions and dashed lines to unstable ones. 
As ~ crosses some critical value ~o a pair of oscillatory solutions with 
amplitudes r2 and r 3 appear (global bifurcation), one stable, the other 
unstable. As ~ is increased further, the zero amplitude solution r = 0 
(fixed point) loses stability at ~ = 0, and only the oscillatory state 
remains stable. In the open interval ]~o 0[ two stable states coexist, as 
indicated by two crosses for some intermediate value of ~. In this region 
the system switches spontaneously between these two states by noise- 
induced transitions 

In the double-stimulus paradigm we have S ( t ) =  t~(t) 
+ 6 ( t -  I), where I is the variable ISI. The complex 

coupling strength F is used in polar coordinates: 

F = I FI exp (ir (4) 

For  stimulation from the resting state u ( t  = O) = O, the 
relation of the parameters  introduced so far to the experi- 
mental measures latency-peak time To and latency-peak 
amplitude Ao is: 

~ r  = - touTo + arctan(~Jco,) (5) 

I FI = Ao e x p ( -  ~, To)/COS (to~ To + ~r) (6) 

Thus, if o~, and st, are chosen to obtain realistic peak 
width and damping, then F can be chosen to fit A0 
and To. 

Nonlinearity first comes in as we model the OC. The 
phase space must be at least two-dimensional in order to 
afford oscillations. Again, restricting the model to the 
minimal two dimensions z l ,  z2  (in complex notation 
z := z l  + iz2) we assume that, by choice of coordinates, 
zl is the observed variable. As discussed in the previous 
section the experimental results suggest a view of 
self-generated oscillatory activity rather than passive os- 
cillatory relaxation. Therefore, we map  the observed os- 
cillations onto a limit-cycle at tractor  in the (zl, z2)-plane. 
At the same time the oscillation obviously comes to rest 
after a sufficiently long time. This resting state is mapped 
onto a fixed point at t ractor  stable under no-stimulus 
conditions. In general, bistability of these two attractors 
is possible. In the presence of noise such bistability allows 
for stochastic switches from the resting state and vice 
versa. The observed probabilistic decay of the oscilla- 
tions will be discussed in terms of such stochastic switch- 
ing below. 

In Fig. 2 we have illustrated the assumptions made 
about  the dynamics of the oscillatory component  so far. 
We sketch the at t ractor  layout as a function of a para- 
meter that measures the strength of an external stimulus. 

To the left, only the resting state is stable (here illustrated 
by zero oscillation amplitude r = 0). To the right, under 
sufficiently strong stimulation, the oscillatory state (here 
illustrated by nonzero oscillation amplitude r) is stable. 
The two regions may overlap, forming a region of bista- 
bility. Points in parameter  space where solutions change 
qualitatively, in particular, lose stability or cease to exist, 
are called bifurcation points [see, e.g., Guckenheimer and 
Holmes (1983) for introduction to these ideas]. Near  such 
bifurcation points, local normal form theory provides us 
with the simplest (in the sense of lowest order in a Taylor 
expansion) functional form of a dynamical system consis- 
tent with the particular bifurcation. This means that any 
dynamical system with the same local bifurcation behav- 
ior can be transformed by a smooth change of coordin- 
ates to this normal form. This transformation is valid in 
a neighborhood of the critical parameter  value and lo- 
cally in phase space close to the bifurcating solutions. 

Using the normal form as the functional form of 
a dynamical model assures structural stability; that 
means, small deviation of the actual dynamics of a system 
from the modeled dynamics do not invalidate the bifur- 
cation behavior and, thus, the qualitative properties of 
the solutions of the dynamics. Moreover, the existence of 
other solutions in the model, not contained in the bifur- 
cation diagram, is excluded. 

In the present case, the two relevant solutions, that is, 
the fixed point and the limit cycle, may be at a finite 
distance from each other in parameter  and phase space. 
An approximation to the functional form can be given if 
we assume, in addition, that the two bifurcations, the 
instability of the fixed point and the occurrence of the 
limit cycle, are very close in parameter  and phase space. 
In this case, a codimension-2 normal form can be given 
for the complete phase diagram. The resulting so-called 
generalized Hopf  normal form reads: 

= czz  + / ~ z l z l  2 - ~,zlzl 4 (7) 

where fl, ~ e R, 7 > 0, and c~ := st~ + it,,  are model para- 
meters. These equations become transparent in polar 
coordinates, z = rexp(i~), where r is the oscillation am- 
plitude and �9 the oscillation phase, each governed by the 
following dynamics: 

i" = ~ r  + f ir  a - -  y r  s (8) 

= ( 9 )  

The phase equation has the general solution 

r = ~o + o~t, with ~o = r = 0) (10) 

The amplitude equation (8) can be analyzed with respect 
to its fixed points given by zeros of its fight-hand side. 
Note that fixed points at nonzero amplitude e > 0 corres- 
pond to limit cycle solutions z(t) = ~exp[ icoj  + ~o)] of 
(7). The parameter  co~ can therefore be directly related to 
the frequency of oscillation observed in experiment. 

To assure boundedness of the solutions we fix ~, > 0. 
The layout of attractors as a function of the two remain- 
ing model parameters ~ and fl is shown in Fig. 3. Four  
regions in this parameter  plane can be differentiated, 
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Fig. 3. A phase diagram of (8) in the (az, fl)-plane shows four regions 
with qualitatively different phase portraits, here illustrated by plots of 
the amplitude dynamics: zeros with negative slope indicate stable fixed 
points, zeros with positive slope unstable fixed points. Fixed points at 
finite amplitude imply limit cycle oscillation, while fixed points at r = 0 
imply a stationary state for the complete dynamics. The theoretical 
picture of the experimental observations is based on assuming that the 
resting state of the system in the absence of stimulation resides in 
region IV, the bistable region. A stimulus event is assumed to shift 
~q from region IV to region I, as indicated by the arrows. This leads to 
a destabilization ofr = 0 and thus to a transition to the stable branch at 
r # 0, corresponding to the onset of oscillation. After returning to 
region IV, the system remains trapped in the oscillatory state 

based on the existence and stability of fixed points, all of 
which can be analytically determined in straightforward 
fashion. The region denoted as region IV contains the 
phase portrait which expresses our modeling assump- 
tions: a stable fixed point at r = 0 coexists with a stable 
limit cycle at r = x/fl/(2~:) + A, with d = x/[a% - fl2/(4~)]/~. 
The first corresponds to the resting state, the second to 
the oscillator state. The bifurcation diagram (Fig. 2) sum- 
marizing our theoretical assumption is obtained if ctz is 
considered to be the bifurcation parameter shifted be- 
tween regions IV and I, as indicated by the arrows in 
Fig. 3. 

3.2 The role o f  noise 

Noise must be included explicitly in the modeling of 
neuronal time structure not only to account for observ- 
able fluctuations present in biological systems, but also 
for conceptual reasons (cf. Sch6ner and Kelso 1988). 
Here stochastic switching among two bistable states of 
the oscillatory dynamics is mediated by noise, and the 
noise level affects the time scale of such switches. Based 
on the typical assumptions (many independent sources 
of variability with very fast decay of correlations; cf. 
Horsthemke and Lefever 1984) fluctuations are included 
in the dynamical model by adding stochastic forces in the 
form of independent gaussian white noise processes to 
the dynamic equations. For  the oscillatory component,  
for instance, 

= c , z  + f lzlzl  2 - ~zlz[  4 + ~ , ( t )  (11) 

where ~z(t):= ~ , ( t )+  i~2(t) are two independent gaus- 
sian white noise processes with (i, j = 1, 2): 

<~> = o (12)  

<~(t)~j(t')> = Q6(t - t')6 o (13) 
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Here <" > denotes the statistical average, and Q measures 
the noise strength. The transfer component is dealt with 
analogously. 

Variabilities of measured onset times, cycle times, or 
amplitudes are accounted for in terms of fluctuations 
described by the stochastic dynamics and depend on 
both the underlying dynamics and the noise strength. In 
simulations reported below, the corresponding para- 
meters are chosen so as to reproduce the observed level of 
fluctuations as well as the observed order of magnitude of 
mean lifetimes of evoked oscillations ( ~  400 ms). 

Stochastic switching between the resting and the os- 
cillatory state may also account for the observation of 
spontaneous oscillatory neuronal activity, that is, oscilla- 
tions observed in the absence of stimulation. The 
rhythms originating from the thalamocortical system are 
known to Occur spontaneously, and among these the 
rhythms in the alpha range have been examined in detail 
with respect to their spontaneous occurrence (Andersen 
and Andersson 1968; Steriade and Llin/ts 1988; Steriade 
et al. 1990). In the experiments referred to here, episodes 
of variable duration in which spontaneous oscillations 
with cycle times matching those of the stimulus-evoked 
oscillations were observed in L F P  recordings. An 
example is shown in panel A of Fig. 5. Such episodes 
occur as well in the stochastic bistable model as illus- 
trated in the same figure, panel B. 

3.3 Coupling the two dynamic components 

We have introduced two response components on the 
basis of their different dynamic properties. Actually, both 
components are observed through the same neuron. 
Therefore, the question must be addressed of how the 
two dynamic components contribute to the one observ- 
able time structure of neuronal response. Defining an. 
observable w(t) essentially amounts to defining opera- 
tionally the nature of the response components u(t) and 
z(t). The simplest idea is to define the observable time 
structure w(t) as the superposition of the two dynamic 
components: 

w(t) = u(t) + z(t) (14) 

This means that the components are defined through the 
limit cases in which the observable time structure con- 
tains only a transfer component  (as occurs for nonoscilla- 
tory cells) or only an oscillatory component (as occurs for 
spontaneous oscillations). The dynamics of each com- 
ponent defined up to now represent the dynamics in these 
limit cases. 

If both components are observed simultaneously, 
their interactions must be taken into account. First, with 
respect to the properties of the transfer component no 
difference was observed between oscillatory and non- 
oscillatory cells. Therefore, we assume that the oscilla- 
tory component does not couple into the dynamics of the 
transfer component. Second, the oscillatory component  
is observed in isolation, that is, without an accompanying 
transfer response only during spontaneous oscillatory 
episodes in the absence of stimulation. Fleming and 
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Evarts (1959) registered evoked oscillatory responses 
only in conjunction with short-latency (transfer) re- 
sponses. This suggests that the oscillatory component is 
coupled to the stimulus only through the transfer com- 
ponent. Another classical observation supports this 
hypothesis: Chang (1950) reported that the evoked oscil- 
latory time structure is unaffected by a second stimulus if 
this stimulus fails to elicit a transfer response because it is 
applied too soon after a first stimulus. To determine the 
functional form of the coupling of the transfer compon- 
ent into the oscillatory component dynamics we invoke 
two observations: (1) The evoked oscillations start with 
a well-defined initial phase observed through the repro- 
ducible initial cycle time Z~. Such an initial phase can be 
accounted for by the lowest-order additive coupling of 
u into the oscillatory dynamics, which breaks the rota- 
tional symmetry (invariance under phase shift) of the 
normal form. (2)The presence of a transfer response 
increases very much the probability of observing oscilla- 
tions over the case of the absence of a transfer response. 
Theoretically, this implies that excitation of the transfer 
component shifts the relative stability of the resting and 
oscillatory state significantly in favor of the oscillatory 
state. In the bifurcation diagram (Fig. 2) this means that 
the transfer response shifts the bifurcation parameter to 
the right and thus stabilizes the limit cycle while de- 
stabilizing the fixed point at z = 0. This can be accounted 
for by multiplicative coupling of u into the oscillatory 
component. 

Based on these assumptions the complete transfer 
and oscillatory dynamics can be written as 

f4 = cuu + FS( t )  

= (c= + k l u ) z  + P z l z l  2 - 7zlzl 4 + k2u (15) 

where kl and k2 are two complex coupling constants. The 
real part of kl affects the stability properties of the 
oscillatory state, and the imaginary part of k~ contributes 
to the frequency of the oscillations in the presence of 
a transfer response. The phase of k2 determines the initial 
phase of the oscillatory response (and hence, Zx) while its 
modulus affects the amount  of phase shift occurring on 
secondary stimulation of an ongoing oscillation. Based 
on these analytical results these coupling parameters can 
be adjusted to match experimentally observed properties 
of the neuronal time structure without formal error-min- 
imizing fits. 

In Fig. 4 numerical simulation of Eq. (15) illustrates 
the activation of the different response components and 
their superposition under the double-stimulus paradigm. 
The parameter values listed in the figure caption were 
used for all simulations reported in this paper. The 
dynamical model captures the essential experimental 
effects: (1) spontaneous oscillatory episodes, (2) prob- 
abilistic duration of episodes under OPS conditions, and 
(3) the modulation of the oscillatory time structure de- 
pending on the phase at which a second stimulus is 
applied during an ongoing oscillation. A comparison of 
properties 1 and 3 between experimental and simulated 
data is given in Fig. 5. 
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Fig. 4A--C. Activity of response components in a simulated double- 
stimulus paradigm. The first stimulus is given at t = 0 and the second 
after a delay of 340 ms, as indicated by the arrows. A The oscillatory 
component is activated at t = 0, and the second stimulus induces only 
weak effects on the phase and amplitude of the oscillation at this 
particular value of interstimulus interval (ISI), even though the oscilla- 
tion was started at t = 0 by identical stimulation (cf. data in Fig. 1). The 
small peak indicated by the asterisk is the only visible influence. After 
about 550 ms the oscillation decays spontaneously. B Transient, stereo- 
type activation of the transfer component by both stimuli. C Superposi- 
tion of A and B, which models the observable signal. The parameters 
are chosen in such a way that (1) oscillations can be evoked reliably by 
stimulation, (2) the frequency of oscillation is 10 Hz, (3) the first cycle 
time is greater than the following ones, (4) the average length of evoked 
oscillatory episodes is about 400 ms, (5) latency peaks are sharper by an 
approximate factor of 5 than oscillatory peaks, as observed in experi- 
ment. Parameters used: ct~= -23Hz; fl=10Hz: 7= 1Hz; 
~o== 2nx 10Hz; ~t, = - 60 Hz; ~o,= 115 Hz; kl = - 12iHz; 
k2 = 12 Hz; F = - 17i. All noise levels are set to Q = 4 Hz. These 
parameters are held fixed in all simulations shown throughout this 
article, unless stated otherwise 

3.4 Oscil lat ion l i fe t imes 

The lifetimes of oscillatory response patterns can be used 
as a window into the underlying system dynamics. 
Empirically, the lifetime of the oscillatory state can be 
estimated by determining the time TL at which the last 
detectable peak is observed. For 9 of 11 oscillatory cells 
TL was determined on the basis of PSTHs for all ISI 
conditions. (The two excluded cells had clear indications 
of nonstationary during the 1-h measurement time for 
a complete ISI scan.) The mean lifetime under OPS 
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Fig. 5A-D. Comparison of model features 
with recorded data. A Spontaneous oscilla- 
tory episodes in a local field potential (LFP) 
recording. Two pronounced oscillation 
"spindles" do appear. B Same phenomenon 
in a simulated run. The noise intensity is 
increased (Q = 9 Hz), compared with that of 
Fig. 4, to increase the probability of spon- 
taneous oscillatory events. C The time of 
first oscillatory peak after the second stimu- 
lus, extracted from PSTH data, is plotted 
against ISI. There are two obvious plateaus 
in the vicinity of the times where peaks from 
the response to the first stimulus would be 
expected (indicated by 7'2, Ts). Over the 
range of a plateau, the oscillations elicited by 
the first stimulus are unaffected in timing by 
the second one. D Same diagram as panel 
C for simulated data. Each point is extracted 
from an average signal of eight identical 
runs. Plateaus are more pronounced than in 
C. Note that parameters were not chosen to 
fit these plateaus, but according to the points 
listed in the caption of Fig. 4 
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Fig. 6. A Typical example of the dependence of the time of last 
oscillatory peak Tr on ISI in a double-stimulus paradigm. Filled dots 
correspond to measured points extracted from PSTHs; the continuous 
line is found by linear regression (slope is 0.3 in this example), and the 
dashed line starts from the mean lifetime derived from oscillations per se 
(OPS) conditions and increases with slope 1. This increase would be 
expected if the oscillatory response after the second stimulus would be 
a restarted version of the first response. B Same plot as in A but 
obtained from simulations mimicking the experimental double-stimu- 
lus paradigm 

conditions across the 9 cells was found to be 
Top+ = 526 ms. Panel A in Fig. 6 shows TL for a typical 
cell as a function of ISI jointly with a linear regression of 

this relationship. The resulting slope of the regression 
curve can be contrasted to the hypothetical case where 
the second stimulus in the double-stimulation paradigm 
starts a new, independent oscillation each time. Then the 
lifetime measured from the second stimulus should be 
independent of ISI and equal to the mean lifetime under 
OPS conditions. As measured from the first stimulus, 
Tr should increase linearly with slope 1 from the mean 
lifetime under OPS conditions as indicated by the dashed 
lines in Fig. 6. The observation that the measured life- 
times lie below this limit (statistically the mean regression 
slope of b = 0.4 + 0.1 is significantly different from both 
0 and 1) indicates that the oscillations following the 
second stimulus are affected by that stimulus but carry 
information from their own past. 

The dynamical model reproduces this experimental 
finding. A series of simulations exactly mimicking the 
experimental paradigm was analyzed in the same fashion 
as the experimental data. The result shown in panel B of 
Fig. 6 matches the experimental observation. 

It is possible to pinpoint more precisely which aspect 
of the theory accounts for the particular ISI dependence 
of lifetimes. The following discussion abstracts from the 
details of the dynamical model and aims to show that 
bistability as a concept provides a quantitative explana- 
tion of the lifetime statistics. We consider an abstract 
bistable dynamical system in the presence of fluctuations 
with the two stable states, R (for resting state) and O (for 
oscillatory state). We make three assumptions: (1) R is 
more stable than O so that stochastic switches from R to 
O are very unlikely; (2) a switch from R to O is induced 
with probability 1 by an external stimulus; (3) applying 
a stimulus within state O does not affect the system. We 
are interested in the stochastic switching process from 
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Fig. 7. A Estimation of the probability density P for 
a multiunit recording, obtained from a histogram 
with a binsize of 30 ms, of 78 measurements of the 
time of last peak under OPS conditions. The histo- 
gram is normalized to give a total area of 1 to allow 
the interpretation as a probability density. The mean 
of this distribution is 540 ms. B Estimation of func- 
tions needed to predict the ISI-dependent lifetime in 
the double-stimulus paradigm. Continuous line and 
left scale: probability F derived from the same data as 
A by integration (cumulative histogram). Dashed line 
and right scale: the integral probability derived from 
F by further integration. C, D Results of an equiva- 
lent analysis of a simulated data set. The mean life- 
time was 364 ms for this sample and parameters listed 
in Fig. 4 

stochastic dynamical systems provides us with the con- 
cept of first passage time z (cf. Gardiner 1983). The first 
passage time from O to R is a random variable, and its 
probability density P(T) is well defined. For purposes of 
calculation, the distribution function F(T) defined as 

T 

F(T) = j" P(z)dT (16) 
0 

is useful. F(T) is the probability that a switch from O to 
R occurs in the time interval [0, T]. 

To relate these concepts to experimental measures, 
consider first OPS data. The times TL at which the last 
discernible peak occurs in unaveraged data samples the 
probability density P(z). We have performed the same 
analysis as for PSTH data for three sets of data (two 
single-unit recordings, one multiunit recording) for which 
responses were sufficiently vigorous to estimate TL from 
unaveraged spike data. These estimates were extracted 
from smoothed spike trains obtained by convolving the 
raw spike trains with a gaussian of 10 ms width (cf. 
MacPherson and Aldridge 1979). Note that the gaussian 
filter induces no phase shifts. Figure 7A and B shows 
a sampling of P(z) and F(T) obtained from one of the 
three recordings. A total of about 80 independent 
measurements of TL in individual trials at appropriate 
OPS conditions (ISI = 2000, 1000, and 800 ms) were 
obtained to calculate the histogram. The mean of this 
distribution, ~rops, is.an estimate of the mean first passage 
time. The cumulative histogram samples the distribution 
function, F(T)  as shown in part B of the figure. Panels 
C and D show the result of the analysis of a simulated 
data set. 

Based on these estimates from the OPS data it is 
possible to predict the ISI dependence of TL in the 
double-stimulus paradigm 2. For simplicity of notation, 

ISI is denoted as I in the formulas below. Consider the 
random variable z, defined as the time in the double- 
stimulus paradigm when the switch from O to R occurs 
after the second stimulus. Its probability density Q(I, z) 
depends on ISI. There are two contributions to this 
probability density. First, in cases in which the switch has 
already occurred before the second stimulus, that stimu- 
lus puts the system back into state O with probability 
1 and the decay probability counting from ISI must be 
calculated (cf. assumption 2 of the definition of the 
idealized system above). Second, in cases, where the sys- 
tem has not decayed before the second stimulus is ap- 
plied, that stimulus does not, in our abstract bistability 
model, affect the lifetime of O (assumption 3 above), and 
we must obtain the probability density of the OPS case. 
The mathematical derivation given in the Appendix leads 
to the following formula: 

Q(I, z) = F(I)P(z -- I) + P(z) (17) 

For large I, Q(I, ~) is dominated by the first term of this 
equation because the transition O ~ R has occurred with 
high probability before the second stimulus. In this limit 
case, F(I) ~ 1, and P(T) ~ 0 for T > I so that the prob- 
ability Q reduces to a time-shifted OPS distribution P. 

The mean first passage time in the DSP at a fixed 
I can now be calculated as 

oo 

]rL(1):= j" zQ(l, z)d~ (18) 
I 

2 Estimates of the mean lifetime are less sensitive to noise than esti- 
mates of the distribution of lifetimes, because the mean value is an 
integral measure compared with the probability distribution. Therefore, 
we did not compare theoretical and estimated distributions 
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Fig. 8A--C. Predicted and measured mean lifetime of oscillations as 
a function of ISI in the double-stimulus paradigm for three recordings. 
A, B Single units; C multi unit. Eachfilled dot is the average of about 30 
measurements from unaveraged data, with the corresponding standard 
deviations indicated as error bars. All three plots include totally about 
3000 independent measurements of TL.The continuous lines correspond 
to the prediction calculated with (19).The dashed lines start from the 
mean lifetime derived from OPS conditions and increase with slope 1, 
representing the case of a pure restart (el. Fig. 6) 

and this is the quantity which corresponds to estimates of 
the mean TL for a given interstimulus interval I. Inserting 
(17) and performing some mathematical transformation 
we find a formula for T~.(I) that depends only on F(T) 
and the mean first passage time in the OPS case, Tops (see 
Appendix for derivation): 

I 
TL(I) = [1 + F(I)]Tops + SF(T)dT (19) 

o 

Given the OPS estimates of F and Tops (cf. Fig. 7), the 
ISI dependence of T~. can be predicted without any fur- 
ther free parameters. Figure 8 shows the predicted curves 
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Fig. 9. Correlation of mean lifetimes of the OPS with the slopes de- 
rived from a linear regression of the ISI dependence of mean lifetime in 
the double-stimulus paradigm (of. Fig. 6). The coetticient of correlation 
is p = -0 .7 ,  which is in good agreement with the predicted anti- 
correlation described in the text 

jointly with the corresponding experimental estimates. 
The agreement is excellent in view of the variability of the 
experimental estimates. 

A further check can be based on the following 
thought. The slope of TL(I) must be less than 1 because 
this is the slope of the hypothetical limit case of a restart. 
The deviation of Tr.(l) from the slope 1 curve is indicative 
of the contribution of those probability events in which 
the oscillations "go through" the second stimulus. There- 
fore, we expect the slope to be closer to 0 for vigorously 
oscillating cells with long lifetimes and closer to 1 for 
badly oscillating cells with short lifetimes of the oscilla- 
tory state. This prediction can be tested by correlating 
the slopes of the TL(I) regression obtained from averaged 
data with the mean lifetime under OPS conditions. In the 
experiments this correlation is found to be negative 
(p = - 0.7, significant with 4% error) as predicted (see 
Fig. 9). 

4 Discussion 

Experiments probed the dependence of the temporal 
structure of evoked oscillatory responses of cortical 
neurons on the temporal structure of peripheral stimuli. 
Theory for this observed dependence was based on the 
assumption that at the observable level dynamic laws can 
be identified. Variables were chosen to account for differ- 
ent dynamic components of the neuronal response, the 
transfer, and the oscillatory component. A dynamical 
model was based on the phase diagram reconstructed 
from the experimental data, which included a bistable 
region with an oscillatory and a resting state. The 
dynamic model was compared with the experimental 
results. Abstracting from the functional form of the 
model it was shown how the dependence of lifetime on 
the interstimulus interval can be derived from the 
principle of bistability of oscillatory and resting state. 

What is certainly unusual and possibly unfamiliar 
about the theoretical approach reported here is that 
a quantitative account of cortical response behavior is 
attempted without reducing the description to biophysical 
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models of neurons and their circuits. We argue that the 
approach expounded here in the context of a concrete 
example is relevant because (1) it fosters a close link of 
theory and experiment, (2) it is capable of discovering 
principles underlying the temporal organization of neu- 
ronal response, and (3) it provides constraints for reduc- 
tionistic neuronal modeling. The first point is illustrated 
by the interrelation between dynamic model and experi- 
mental paradigm: asking the theoretical question for the 
nature of the coupling of neuronal response to stimula- 
tion led to the experimental paradigm of double stimula- 
tion. On the other hand, that paradigm, commonly used 
also in other contexts, gains a new significance in light of 
the dynamic interpretation. Consider, as a second illus- 
tration, the methods of analysis developed here. Asking, 
for instance, the theoretical question of how in a bistable 
system the decay of the oscillatory state can be under- 
stood, the measure TL of oscillation lifetime was de- 
veloped, and in terms of this measure the experimental 
data revealed additional, hitherto overlooked structure. 
In relation to the second point, the linkage of the prin- 
ciple of bistability to the statistics of lifetime may serve as 
an illustration. Note that the theoretical method is, in 
principle, a general one. 

To address the third point of how dynamic models 
constrain reductionistic models we discuss first the pos- 
sible structural underpinnings of the effects reported in 
this paper. Clearly, the dynamics of the transfer compon- 
ent involve structurally the entire afferent path from 
mechanoreceptors to the primary somatosensory cortex. 
Synaptic interactions of all neurons along this path con- 
tribute to the observed latencies and response ampli- 
tudes. Thus far, even the standard system theoretical 
picture used for the transfer component represents "col- 
lective" dynamics, that is, the effective dynamics of a set 
of tightly interrelated neurons. The structural support of 
the oscillatory component  is less clear, although exten- 
sive experimental and modeling work exists on cortical 
and thalamic sources of oscillations in the 10-Hz range 
[for recent reviews see Steriade and Llinfis (1988) and 
Connors and Gutnick (1990)]. Based on this work the 
most likely picture is one in which groups of neurons are 
involved in generating 10-Hz rhythms in vivo. Individual 
neurons, in particular nuclei of thalamus, are capable of 
generating such rhythms in vitro, but the observation of 
highly synchronized mass signals in vivo suggest that the 
interaction among cells is important for the oscillatory 
response component  of neurons in intact structures as 
studied here. Hence, the oscillatory dynamics is struc- 
turally almost certainly again a "collective" one. 

Attempts to model the generation of temporal struc- 
ture from models of such underlying neuronal circuitry 
face a number of problems of which we single out two. 
First, the properties of individual components - for 
example, various kernels of thalamus or various types of 
cells - may be different when studied in isolation than 
when studied in the intact system. Second, the solutions 
of such structural models depend often qualitatively on 
structural parameters such as synaptic efficacy and 
synaptic transmission delay. These parameters are, how- 
ever, not easily measurable, and, more importantly, not 

manipulable! As a result, mechanisms underlying the 
generation of observed patterns of excitation remain 
speculative. With respect to both of these problems the 
theoretical approach espoused here can serve to con- 
strain reductionistic models. The collective variables and 
dynamics may indicate which properties of the individual 
components and of their interaction is relevant with 
respect to the macroscopic temporal structure to be ex- 
plained. Furthermore, from a reductionistic model it may 
be easier and more systematic to derive a macroscopic 
dynamics rather than to derive directly the macroscopic 
solutions. For instance, it may be significant and possible 
to show that a reductionistic model affords bistability of 
oscillatory and resting state for a range of structural 
parameters. Finally, the theoretical methods could 
be employed to investigate how far the dynamic proper- 
ties of temporal structure observed at the macroscopic 
level of EEG and evoked potentials (Basar et al. 1992) 
match the dynamic properties of oscillations at the cellu- 
lar level. 

The finding that oscillatory and resting state may 
coexist bistably is potentially of wider significance than 
suggested by the phenomenon under study here. First, 
this finding shows very clearly that temporal structure 
can be actively self-generated by neuronal structures. 
This may be an important message to consider when the 
stimulus dependence of temporal response structure is 
studied, as done, for instance, by Richmond et al. (1990) 
in visual and infratemporal cortex. Second, the dynam- 
ical account of oscillations coexisting with transfer re- 
sponse components may be useful to understand similar 
phenomena in other structures of the nervous system 
such as evoked oscillations in the olivocerebellar system 
(Llinfis and Sasaki 1989) discussed in the context of 
coordination of movement, or in the temporal pole of 
awake monkeys (Nakamura et al. 1991) in the context of 
recognition and short-term memory. In this latter case, 
the persistence of stimulus-related, temporal structure in 
the face of peripheral and internal influences might sup- 
port a function of keeping information available on 
a time scale of hundreds of milliseconds. Bistable pro- 
cesses have also been reported at the single-cell level 
(Silva et al. 1991). 
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Appendix 
Mean first-passage time in stochastic bistable dynamics 
for the double-stimulus paradigm 

Let Dry,t2 denote the event "the stochastic switch from 
0 to R occurs in the time interval It1, t2]". The probabil- 
ity of this event under OPS conditions is by definition 

Probop~(Dt,,~) = F ( t 2 ) -  F(tO (20) 



To calculate a cor responding  probabi l i ty  for the double-  
s t imulus parad igm observe first 

Probasp(DLO = Probd~p(Do.~ and  DI,0 

+ Proba~p(Do,x and  Dt,~) (21) 

where Do,1 is the event that  no  decay occurs within the 
indicated t ime interval.  The first term is t ransformed by 
invoking  condi t ional  probabi l i ty  as follows: 

Probdsp(Do, 1 and  DI,0 = Probdsp(Do,t)Probdsj,(DLrlDo,l) 

= Probop~(Do,~)Probop~(Do,~_1) 

= F( I )F(z  -- I)  (22) 

where we have used the assumpt ion  that  the s t imulus at 
I puts  the system with probabi l i ty  1 in to  the O state (see 
ma in  text). Invok ing  the assumpt ion  that  further st imula- 
t ion does no t  affect the system if it is already in the 
oscillatory state, the second term in (21) can be rewritten as 

Probd~l,(-ff~o,1 and  Dl,,) = Probops(O1,0 

= F ( z ) -  F(1) (23) 

Adding  the two terms and  differentiating with respect to 
z yields the probabi l i ty  density 

Q(I, r) = f ( l ) P ( z  - I) + P(z) (24) 

defined in the ma in  text. This  funct ion is correctly nor-  
malized: 

Q(l , z )dz  = 1 (25) 
I 

as a little calculat ion shows. Inser t ing  Q(I, z) into (18) we 
obtain:  

TL(I) = I zP(z )dz  + F(I) zP(z  -- I )dz  
I I 

oo oo 

= ~ zP(z)dz  + F(I)  ~ (t + I )P( t )d t  
I 0 

oo 

= ~ zP(z)dz  + f(I)(Tov~ + I), with 
I 

oo 

Tow := j tP(t)dt  
0 

where Tops is the mean  lifetime in the single-st imulus 
paradigm. The first term can be convenient ly  expressed 
as 

oo 

zP(z)dz = Lps -- G(1), 

so that  

1 

with G(I) := ~rP(z)dz  
0 

TL(I) = [1 + F(I ) ]  Tons + IF( I )  -- G(I) 

In tegra t ing  by parts  

I 

G(I) = I F ( I ) -  I F ( T ) d T  
0 

(26) 

we finally ob ta in  
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I 

TL(I) = [1 + F(I ) ]  To., + ~ F ( T ) d T  (27) 
O 
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